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Characteristics of vorticity fluctuations in a 
turbulent wake 
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(Received 21 January 1987 and in revised form 9 September 1987) 

Measurements of the lateral components of the vorticity fluctuation have been made 
in the self-preserving turbulent wake of a circular cylinder. Each component was 
obtained separately using two X-wires separated in the appropriate lateral directions. 
The two velocity derivatives which make up the streamwise vorticity component 
were also determined but not simultaneously. An approximation to the streamwise 
vorticity was made from these measurements. Moments, probability density 
functions and spectra of the three vorticity components across the wake are 
presented and discussed. The high-wavenumber behaviour of the spectra is compared 
with calculations, based on local isotropy. Satisfactory agreement with the 
calculations is obtained for the lateral vorticity components over a significant high- 
wavenumber range. The approximated streamwise vorticity spectrum tends towards 
the isotropic calculation a t  very large wavenumbers. 

1. Introduction 
Although vorticity is an important property of turbulent flows, relatively few 

characteristics for this quantity have been reported in the literature, presumably 
owing to the general difficulty of measurement. An indication of available 
measurements can be obtained from the surveys of Van Atta (1979), Willmarth 
(1979), Wallace & Vukoslavdevid (1982) and Wallace (1986). Wallace surveys 
methods which employ arrays of hot-wire sensors as well as a range of other methods. 
The earlier measurements of the longitudinal vorticity were obtained with the 
Kovasznay (1950, 1955) four-wire probe. Using this probe, the spectrum of the 
longitudinal vorticity fluctuation was obtained by Kistler (1952) in grid turbulence 
while Corrsin & Kistler (1955) obtained r.m.s. values of the longitudinal vorticity 
across a boundary layer. Transverse vorticity measurements were reported by 
Eckelmann et al. (1977) who used a combination of single hot wire, an X-probe and 
a V-probe and by Foss (1979) who used an X-probe with parallel hot wires. More 
recently, Kastrinakis & Eckelmann (1983) used a modified version of the Kovasznay 
probe to measure the second-, third- and fourth-order moments of the longitudinal 
vorticity fluctuation in a fully developed turbulent channel flow. It would appear 
that simultaneous measurements of all three vorticity fluctuations can now be made 
with adequate accuracy. Such measurements were recently reported for a turbulent 
boundary layer by Balint, Vukoslavdevid & Wallace (1987) using the miniature nine- 
sensor hot-wire probe. 

The three components of the vorticity fluctuation oi are given, in Cartesian tensor 
notation, by 

12-2 
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FIGURE 1. Definition sketch showing coordinate system and mean velocity profile. 

where eii, is the alternating tensor, equal to + 1 if i,j, k are in cyclic order, equal to 
- 1 if i,j, k are in anticyclic order and equal to zero if any two of the i, j, k are equal ; 
and u, is the velocity fluctuation in the x,-direction. 

The longitudinal vorticity component is thus 

w 1 =  au3 = u,, , - u2, ,, ax2 ax3 

while the two lateral vorticity components are 

and 

In a previous paper (Browne, Antonia & Shah 1987, hereinafter referred to as I),  
measurements were reported, in the self-preserving region of a turbulent wake, of 
nine of the velocity derivatives which feature in the turbulent-energy dissipation. Six 
of these derivatives were the velocity derivatives that appear in the three vorticity 
components. The derivatives u , , ~  and u,,, that  make up w, were obtained 
simultaneously from a pair of parallel X-wires separated in the 2,-direction, while the 
derivatives u ~ , ~  and u ~ , ~  that  make up w, were obtained simultaneously from a pair 
of parallel X-wires separated in the x,-direction (the coordinate system is shown in 
figure 1). Although the derivatives u , , ~  and u2,, that make up w1 were also measured, 
they were not obtained simultaneously. 

Although it now seems possible to determine the three components of wi 
simultaneously using a fixed-geometry multiple-wire vorticity probe (e.g. Wallace 
1986), the measurements in I provided reasonably accurate, but non-simultaneous, 
estimates of all the velocity derivatives that feature in w i .  These measurements 
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allowed reasonably accurate estimates of w2 and w3 as well as an approximation to 
w1 to be made. In this paper, we present statistics such as the probability density 
function (p.d.f.) and spectra of w2 and w3 and comment on the probable behaviour of 
corresponding statistics for wl. We also check the high-wavenumber behaviour of the 
wi spectra for local isotropy. Calculations of the one-dimensional spectra of wi ,  based 
on isotropy, are outlined in $2 .  Experimental details are given in $ 3 while the p.d.f. 
and associated moments of wi are discussed in $4. Spectra of wi are presented in 9 5 
and a comparison between measured and calculated spectra is made in $6.  

2. Calculation of vorticity spectra based on local isotropy 

expressed using a Fourier-Stieltjes representation (e.g. Batchelor 1953, p. 31) 
For homogeneous turbulence, the fluctuating velocity and vorticity vectors can be 

J -m 

m 

wi(X)  = [ eik'"dQ,(k), 
J -m 

where Ui(k) and Q,(k) are complex random functions with orthogonal increments 
dUi(k) and dQi(k), k is the wavenumber vector and i, in the integrand, is 2/ - 1. The 
increments dUi(k) and dQi(k) are related by 

dQi(k) = eijk ikj dU,(k). (4) 
For homogeneous turbulence, the autocorrelation between vorticity vectors 
separated by r can be written as 

m 

w i ( x )  w j ( x  + r )  = 1 eik.' $,(k) dk, (5) 
J -m  

where $ij(k), the spectral density tensor, is given by 

@ij(k) dk = dQi(k) dQ?(k), (6) 

an asterisk denoting the complex conjugate. The one-dimensional power spectral 
density of wi is denoted by q3,,,z(kl), defined so that 

where 

Using (4) and (6), it can be shown that (cf. Batchelor 1953, p. 39) 

$ij(k) = ( s i j k 2 - - i k l ) ~ l l ( k ) - k 2 q 3 j i ( k ) ,  (9) 

where $ii(k) is the velocity spectral density tensor and Si, is the Kronecker delta, 
equal to one for i = j and zero €or i =I= j .  The tensor &(k) is related to dU,(k) by the 
relation 

&(k) dk = dU,(k) dU:(k), 

and satisfies the continuity equations 

ki&(k) = kjq3ij(k) = 0. 
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When isotropy is assumed, (9) reduces to 
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$ij(k) = $ij(k) = k2 # i j ( k ) ,  

with 

where E(k)  is the three-dimensional spectrum and 

fi E ( k )  d k  

is the total kinetic energy per unit mass. 
Relatively simple expressions for #Wi(kl) can be obtained using (10) and (1 1)  in (S), 

transforming to polar coordinates and integrating over a plane orthogonal to the 
k,-axis. Only the final results are written below: 

and 

The equality between #W2 and #,,,a can be deduced from the equality between $22 and 
$,, and relations (S), (10) and (11) .  The isotropic spectrum of w1 differs from the 
isotropic spectra of w2 and w,, (13) indicating that #W,  is equal to  twice the second 
term on the right-hand side of (12). 

3. Experimental details 
Measurements were made a t  a number of positions across the self-preserving wake 

of a circular cylinder, of diameter d = 2.67 mm, a t  a distance of 420d from the 
cylinder. The mean velocity profile a t  the measurement station is shown in figure 1.  
The Reynolds number, based on the free-stream velocity O,, (= 6.7 m/s) and 
cylinder diameter d was 1170, while the turbulence Reynolds number R, = u', h/v, 
where h is the longitudinal Taylor microscale, varied from about 40 a t  the centreline, 
to about 80 a t  x,* = 2.0. The prime denotes a r.m.s. value and the asterisk represents 
normalization by the local mean velocity O1 and/or L,  where L is the mean velocity 
defect half-width. At the measurement station, L is 12.3 mm and the mean velocity 
defect U ,  (figure 1) is 0.36 m/s. The Kolmogorov microscale - q[  = (v3//.,)a, where is 
the average isotropic turbulent energy dissipation = 15vu,2, increases from about 
0.45 mm a t  the centreline to about 0.7 mm a t  x: x 2.0. Full details of the 
experimental apparatus and experimental conditions have been given elsewhere 
(Antonia & Browne 1986 ; I) and will not be repeated here. 

As noted earlier, the components of wi were obtained from a number of separate 
experiments, each involving two parallel X-probes. The components of w2 were 
obtained simultaneously, as were those of 0,. I n  the case of the w2 components, the 
X-wires were aligned in the (x,,x,)-plane and separated by a distance Ax, x 1.6 mm. 
In the case of the w, components, the X-wires were in the (x,,x,)-plane with a 
separation Ax2 x 1.6 mm. The two components of w1 were obtained separately, the 
first ( u , , ~ )  using two X-wires in the (xl,x3)-plane separated by a distance Ax2 x 1.6 
mm and the second (u2,,) using two X-wires in the (xl,x2)-plane separated by a 
distance Ax, x 1.6 mm. The wires in each of the X-probes were 1 mm apart. 
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The signals from the X-wires were low-pass filtered a t  a frequency f,( - 3  dB) 
approximately equal to the Kolmogorov frequency f K (  = 01/2nq) and sampled a t  a 
frequency equal to 2 f ,  into a PDP 11/34 computer using a 12 bit A/D converter. The 
record duration was 45 seconds. The choice off, x fK was dictated mainly by the 
onset of noise in the spectra of ul,l, u , ,~ ,  ul,,  and u2, at f ,  x l .lfK. From these signals 
and the velocity-yaw calibrations of the X-probes, digital time series were constructed 
for the velocity fluctuations ui. Digital time series of w2 and w, were then formed, 
using the approximations 

Au - Au, 
Ax3 At ’ 

w2 x 2 - k  q 1 - -  

and 
- Au2 Au 0, x -u-1--1 

At Ax,’ 

Aui is the difference between the ui signals and At is the time interval, equal to the 
inverse of the sampling frequency, between consecutive samples. Note that Au,/At 
and Au,/At were computed from the time series of u, and u,, measured a t  one of the 
X-wire locations ; the statistics of w, and w3 were essentially unchanged when u, and 
u, were taken a t  the other X-wire location. In the calculation of w ,  and w,, the cross- 
stream resolution length (Ax, = Ax, % 1.6 mm) is approximately the same as the 
streamwise resolution length (0, At M 1.4 mm). 

In order to ascertain that the velocity derivatives involved in the measurement of 
the vorticity fluctuations were measured reliably with the present two X-probes 
arrangement, a number of checks were made. One of these checks (see I) consisted of 
comparing the values of u; obtained from each X-probe with those measured with a 
single hot wire. A more important check, in the present context, was to compare the 
derivatives u1,2 and u1,3 as inferred from the two X-probes, with values obtained 
using two parallel hot wires for the same lateral separation as with the two X-probes. 
For both ui, and ui, ,, agreement at several values of x: was found to be better than 
5%. No correction to the X-probes was made for the possible effect of t71,2 since this 
mean velocity gradient is small in this flow. At xz % 0.8, where the magnitude of 
01,, is largest (L01,2/Olm M 0.04), the maximum values of and Jul,,l were larger 
than i71,2 by factors of 11 and 10 respectively. A consequence of these values of i71,2 
and u1,2 is that the two X-probe arrangement is inadequate for resolving the mean 
velocity gradient but can adequately resolve fluctuating velocity gradients. No 
corrections have been applied for the effects of the cross-stream velocity components 
on the X-probes, primarily because the local turbulence levels are quite small in this 
flow (at the measurement station, the maximum value of ui/Ul is less than 2 %). It 
should be noted that although the influence of the cross-stream components has been 
ignored here, this influence could be important in other flows. For example, Wallace 
& VukoslavBevid (1981) found that in the near-wall region of a turbulent boundary 
layer, the influence of the instantaneous velocity gradients and cross-stream velocity 
components cause extremely large errors in the streamwise vorticity component 
measured with a modified Kovasznay four-wire probe. 

Taylor’s hypothesis a/axl E - a;’ a/at ,  was used to convert temporal derivatives 
into derivatives with respect to the streamwise direction. Corrections to Taylor’s 
hypothesis to account for the influence of a fluctuating velocity field were not applied 
here. A general, though brief, discussion of the conflicting evidence on existing 
corrections, was given in Antonia, Anselmet & Chambers (1986). It is however worth 
recalling here that (Browne, Antonia & Rajagopalan 1983) good agreement was 
found on the centreline of a turbulent plane jet between various statistics of the 
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a,ctually measured a6/ax1 (6 is the temperature fluctuation) and those obtained by 
Taylor's hypothesis. This result should be applicable in the present flow where the 
turbulence levels are much smaller than in the plane jet. It should further be noted 
that, at x l /d  = 420, the maximum mean velocity variation across the wake is about 
0.050,, (figure 1) so that Taylor's hypothesis would also be a reasonable 
approximation to  the large-scale structure. 

To provide a measure of the accuracy of the measurement of wi ,  estimates were 
made a t  the largest value of x: (w 2.0) a t  which data were taken of r.m.s. values of 
w2 and w3 in the non-turbulent flow. 

The on-off intermittency function I ( t )  ( =  1 in the turbulent region and 0 in the 
non-turbulent region) was obtained by comparing w i  or w; with a threshold level k. 
A sufficiently wide range of k was identified for which the average crossing frequency 
of I ( t )  was approximately constant ; over this range, w; in the turbulent zone and the 
non-turbulent zones, calculated with respect to the zone averages, were also 
approximately constant. The ratio ( w ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~ / ( w ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~  was found to be equal 
to about 11 for i = 2 and 10 for i = 3 ;  these values represent an estimate of the 
spurious vorticity measured by the pair of X-probes. 

4. Results for the r.m.s., p.d.f., skewness and flatness of wi 

Distributions, across the wake, of r.m.s. values of the components of wi are plotted 
in the form w;* vs. x: in figure 2 .  The values of w;  were determined with the 
approximation 

i.e. by assuming that the correlation between u3,2 and 

assumption. The correlation coefficients -/u;, u;, 3 ,  u2, , u,, ,Ju;, , ui, 
u,, u3, ,/u;, ui, 

w; w (igz + g, &;, (14) 

It is appropriate to discuss the experimental evidence with respect to the above 
and 

is zero. 

obtained using the isotropic relation 

would all be equal to -0.25. The measured coefficients - /U; , ,U; ,~  and 
U ~ , ~ U ~ , ~ / U ; , ~ U ~ , ~  vary from about -0.06 at the wake centreline to about -0.15 a t  

It also follows from (15) that the correlation coefficients ul,l~2,2/ui,~ u ; , ~ ,  
ul, ug, 3/u;, u ; , ~  and u2,2~3.3/ui, u;, should all be equal to  -0.5. Measured values 
of the first two coefficients fall in the range -0.25 (x,* = 0) to about -0.4 (z,* w 2). 
The third correlation coefficient could not be measured in the present experiment ; we 
have however estimated it from the continuity equation, expressed in the form? 

x,* z 2.0. 

- 
GJ = ( " 2 , 2 + u 3 , 3 ) 2  

- 
and measured values of $,,, 2,2 and u : , ~ .  The resulting correlation coefficient 
u2, us, 3/u;, uj, is about -0.7 independently of x,*. Although the magnitude of this 
coefficient seems large, the departure from isotropy is no larger than that observed 
for the coefficients -/u;, u;, and u1,3~3,1/u;, uj, ,. 

The above considerations and the discussion in 5 5, which relates to the formation 
of the approximate spectrum ofw,, tend to suggest that  the magnitude of u3,2 u2,,/ 
uj, ui, may be slightly larger than that of the correlation coefficients which appear 

t Baht-et al. (1987) use this equation to check Taylor's hypothesis by comparing the right-hand 
side with u : , ~  /it:. 
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x: 

FIGURE 2. Root mean square vorticity components. 0, ",* using (14); 0, w;* ;  A, w;* ;  -, 

( 5 & ) ~ L / ~ l ;  --, estimate of w;* using w;  = and the isotropic value for u3,2u2,3. 

in w i  and w i  and therefore the neglect of the cross-term in (14) is not completely 
justifiable. A value of about -0.25, i.e. the isotropic value, would seem to be a 
reasonable estimate for - / f lu; ,  ui, 3.  

The results in figure 1 indicate that w i  and w i  are approximately equal and 
decrease monotonically with distance from the centreline. By contrast, w i  is 
maximum at  x: x 0.7 and is significantly larger than w;  or wj  except near the edge 
of the wake where the intermittency factor (= 1) becomes small (at  x: x 1.8, this 
factor is approximately 0.25). Estimates of w; obtained with the relation 

1 

4 = ( % , 2 - u 2 , 3 1 2 1  

and an assumed isotropic value (-0.25) for the correlation coefficient are also shown 
in figure 2. These estimates are about 10% larger than those inferred from (14). 

The relative behaviour of the distributions in figure 2 can be compared with those 
obtained by Balint et al. _ _  (1987) in a boundary layer. The latter authors obtained 
simultaneous values of OJ;, 61; and (for this flow, w1 is in the longitudinal direction, 
w2 is in the direction normal to  the wall and w3 is in the spanwise direction) using a 
miniature nine-sensor hot-wire probe. In  the outer part of the logarithmic region and 
in the wake-like region, are approximately equal and smaller in magnitude 
than q, in a manner similar to  that exhibited by the present data (figure 2) .  Balint 
et aZ.'s near-wall measurements and those of Kastrinakis & Eckelmann (1983) in a 
turbulent channel flow indicate that the maximum value of w; occurs near xi x 20 
(the superscript + representing normalization with wall variables) where the average 
production of turbulent energy is maximum. The value of xz ( x 0.7) a t  which the 
present distribution of w; is maximum corresponds approximately with the 

- It follows from (1) and the isotropic relation (15) that  w;,  w i  and 2 are equal to 
5ui,,. Figure 2 shows that w; is significantly larger than the isotropic value whereas 

and 

maximum of turbulent energy production. _ _  
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FIGURE 3. ComDarison with isotroDv of the sum of the mean sauare values of the vorticitv - 1 "  _ - _  
components. , (w;  + w i  +w:)/lSu'f,  ; __ , isotropic value, (16); --, using u: = ( U ~ , ~ - U ~ , ~ ) '  

and the isotropic value for u ~ , ~ u ~ , ~ .  

w;l and w; are in reasonable agreement with the isotropic value in the fully turbulent 
region. For isotropy, the sum of the components of 2 is given by 

The ratio of the left- and right-hand sides of (16) is plotted in figure 3 and would 
have a value of 1 if isotropy applied. The departure from isotropy increases slowly 
away from the centreline. The magnitude of the ratio is about 20% larger than 
the isotropic value in the fully turbulent part of the wake (I= 0.91 at x: z 1.0). 
The magnitude pf this ratio increases by about 10% (figure 3) if the relation 
w; = (u3, - u2, J2' is used with the isotropic value for u3, u2, 3. 

The probability density function p of wt (i = 2,3)  was obtained a t  several locations 
in the fully turbulent region. The distributions shown in figure 4 indicate good 
symmetry but a noticeable departure from the Gaussian distribution for large 
magnitudes of the fluctuation, the departure increasing as (wil increases. This 
departure is obvious even though the oscillations in the measured probability density 
function increase with the magnitude of w2 and w3.  

Since the skewness 2 / w i 3  and flatness factor 2/4" provide quantitative measures 
of the departure of p from a Gaussian distribution, it is of interest to consider the 
variation of these two quantities across the flow. Balint et al. (1987) have noted, 
using flow symmetry considerations, that the skewnesses of w1 and w 2  should be zero 
everywhere. In  the wall region of a boundary layer, they found that the skewnesses 
of w1 and w2 are negligible and attributed the non-zero skewness of w3 (typically - 1) 
to spanwise vortex stretching activity. The skewness (figure 5i) of w2 is zero 
throughout the fully turbulent region, the location (x: z 1 )  where the departure 
from zero first occurs corresponding approximately with the start of the intermittent 
region. The skewness of w3 is approximately zero in the fully turbulent region. The 
difference between this behaviour and that in the boundary layer can perhaps be 



Characteristics of vorticity $fluctuations in a turbulent wake 357 

I I I I 

- 1  

-2 

-3  

-4 

-4.5 -2.25 0 2.25 4.5 

B = WJi 
FIGURE 4. Probability density functions of lateral vorticity components at xz rz 0.98. (a )  i = 2;  

( b )  i = 3. -, Gaussian. 

ascribed to the continuous generation of vorticity associated with the boundary- 
layer wall. Unfortunately, Balint et al. (1987) do not present data for the skewness 
of wi in the ‘wake ’ region of the boundary layer, where comparison with the present 
data in the intermittent region may have been more relevant. 

The flatness factors (figure 5ii) of w2 and w3 are approximately constant in the 
range 3.5 to 4, in the fully turbulent region and begin to increase for x,* 2 1. Also 
shown in figure 5 are the skewness and flatness factors of the derivatives that make 
up the vorticity components. Comparison of the behaviour of the skewness and 
flatness factors of u2, and u3, with those of the corresponding components of w2 and 
w3 suggests that  the flatness factor of w1 may be similar to that of w2 or w3 while the 
skewness of w1 may increase more slowly, near the edge of the wake, than that of 
w 2  or w3.  

The measurements of Kastrinakis & Eckelmann (1983) in a fully developed 
turbulent channel flow indicate that the skewness of w,  is zero except near the wall 
while the flatness factor of w1 increases away from the wall becoming constant only 
near the channel centreline. These authors suggested that this increase may indicate 
that streamwise vortices occur less frequently as the distance from the wall increases. 
If a similar interpretation is applied to the present data, the distributions of 
figure 5 would tend to imply a homogeneous distribution of three-dimensional 
vortices in the fully turbulent flow region. Since the increase in the flatness factor is 
strictly associated with intermittency, one would expect to find fewer vortices in this 
region. To gain a clearer picture of the vortical structure of this flow, information is 
needed on the three-dimensional vorticity associated with the large-scale motion. 
The flow visualizations in Antonia et al. ( 1 9 8 7 ~ )  suggested the presence of clusters of 
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FIGURE 5(i). For caption see facing page. 

vortex loops (possibly hairpin vortices). Such a vortex model implies a preferential 
organization of the large-scale vorticity but would have to be consistent with the 
fluctuating vorticity statistics presented here. 

5. Results for the spectra of wi 

Spectra of w 2 ,  o3 and of the separate constituents of w1 were obtained a t  several 
locations across the wake. Although results are shown (figure 6) a t  only one position 
(x,* x 0.98), it  was ascertained that they are representative of results obtained a t  
smaller and larger x$ (0 5 x$ 5 2.0)t.  Spectra of wi or of are normalized so 
that 

where p stands for either wi or z+ ,UK[= (vcl)i] is the Kolmogorov velocity, 
k, = 27c f 10, and the factor of 2 has been included for consistency with the definition 
of q5wi given in relation (7).  The maximum value of the ratio Z,/q was 2.7 (at the 

t The location x,* x 0.98 lies at approximately the edge of the fully turbulent region since f is 
approximately 0.92 there. Also, the flow topology obtained by Browne, Antonia & Bisset (1986) 
indicated that coherent structures are centred a t  z,* % 1. 
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wake centreline) and the hot-wire length corrections of Wyngaard (1968) indicate that 
the attenuation in the measured one-dimensional spectrum, which increases as the 
wavenumber increases, is about 14% a t  k , ~  z 0.9. Since this correction is of the 
same order as the experimental uncertainty, wire length corrections were not applied 
to #p. Corrections were however applied for the effect of lateral separation between 
the X-probes on the spectra  of^,!^ whenj is equal to 2 or 3. The correction procedure 
adopted was similar to that outlined by Wyngaard (1969) for the case of parallel hot 
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wires, except for the choice (see Appendix) of the three-dimensional spectrum E ( k ) .  
Corrections were made by multiplying the measured spectra of ( j  = 2 or 3 ) ,  
obtained for a finite separation Axj between the X-wires, with the ratio 

$UJAXj = 0, ~ l ) / $ u t , j ( A x j >  kl )  

where 

Using isotropy, the above double integral can be directly evaluated with the use of 
relation (11) and expression (A2) for E ( k ) .  For Axj/y M 3.2, the ratio 

$UJAXj = 0, ~l)I$U*,*(AXj> k,) 
typically increased from about 1.1 a t  k ,  y M 0.1 to about 1.5 at k, 7 M 0.9. 

The spectrum of wi receives contributions from the spectra and cospectra of 
the constituent velocity derivatives. For example, in the case of w 3 ,  the time 
autocorrelation w3(t) w3(t + 7) can be expressed as 

~ 3 ( t )  ~ 3 ( t + 7 )  = uz, i(t)  ~ 2 ,  i ( t  + 7) + u1, z( t )  ui, z ( t  + 7 )  -u2, i ( t )  u1,2(t+7) -u1, 

and by Fourier transformation, 
u z , l ( t + ~ ) ,  

$ w 3 ( f )  = $ U , , , ( f )  +4u,,,(f)-couz,lul,z(f)-coul,zu,,,(f)~ (18) 

where Co is the cospectrum. Measurements indicated that the cross correlation of 
u2, ,  and u , , ~  was reasonably symmetric about 7 = 0 so that (18) reduces to 

The first two terms on the right-hand side of (19) are plotted in figure 6(c )  as a 
function of log,, k ,  y t .  Also plotted are the sum of these two terms and the sum of all 
terms on the right-hand side of (19). It is evident that $u,,2 makes the major 
contribution to $(03 for small wavenumbers whereas $u,,, becomes more important 
than $u,,, a t  the larger wavenumbers (log,,k,y 2 -0.6). It is also clear that the 
contribution from the cospectrum is negligible except perhaps over a frequency band 
for which the spectrum of u2, , is largest. The cospectrum, plotted using a larger scale 
in figure 7 ( b ) ,  is negative everywhere and exhibits a peak near k,y x 0.06 or 
f L / u ,  x 0.24 which corresponds approximately to the average frequency of coherent 
structures in the wake (Antonia, Browne & Fulachier 19876). 

The distributions (figure 6b)  for $,, and its constituents are similar to those of 
figure 6 (c), the major difference being the even smaller contribution to $w2 from the 
cospectrum C O ~ , , ~ ~ ~ , ~ .  Although the latter quantity also exhibits a peak at the 
average frequency of the structures, i t  becomes positive for k ,  y 2 0.2. The magnitude 
of the peak is comparable to that for CO~, , ,~ , , ,  but the change of sign (figure 7 a )  in 
the cospectrum results in u1,3~3,1 being slightly smaller than ~1,2. 

The spectra of u2,3 and u ~ , ~ ,  shown in figure 6 ( a ) ,  have qualitatively the same 
behaviour, each exhibiting a significant peak near the average frequency of 
structures. It is therefore possible that the cospectrum Cou2,3u3 , may be more 
important, in terms of its contribution to $wl,  than the corresponding cospectra of 
q5w2 and $w3. For the purpose of comparing $ul with the isotropic calculation ( $ 6 ) ,  we 
have assumed that 

$wl M du,,, + $u3,,> (20) 
t For convenience, only smooth spectral curves are shown in figure 6. Unsmoothed curves are 

shown in figures 7 ,  8 and 9. 
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realizing that i t  may be in error in a range of frequencies near the average frequency 
of the structures. The shape of the sum and q5Uas2, shown in figure 6 (a) ,  is quite 
different from that of q5w2 or 

6. Comparison between measured and calculated spectra 
The shapes and magnitudes of q5 and q5,,,3, figures 8 ( b )  and 8 ( c ) ,  are nearly identical 

over the full wavenumber range, in apparent agreement with the requirement of 
isotropy, viz. $Jkl) = $ (k,), and in agreement with the comments made in 
discussing figure 2.  Isotropic calculations for the w2 and w3 spectra were obtained by 
carrying out the integration in (12) using an expression for E(k) ,  details of which are 
given in the Appendix. The measured spectrum ofw, is in reasonable agreement with 
the calculation for k, 7 2 0.4 ( = log,, k ,  7 2 -0.4). Similarly the measured spectrum 
of w, is in reasonable agreement with the calculation for 

w? 

k, 7 2 0.55 (= log,, E l  7 2 -0.26). 

For k,  7 2 0.7, the calculation is slightly larger than the measurement, the difference 
tending to  increase with k, 7. It should be noted here that the corrections which have 
been made to the measured spectra of w, and w3 correspond identically to corrections 
made to spectra of ul, and ul, respectively for the effects of finite separations Ax, 
and Ax,, i.e. no corrections were made for the spectra involving streamwise 
derivatives. It is unlikely that spectral corrections resulting from the assumption of 
Taylor’s hypothesis are significant. More likely reasons for the discrepancy are an 
insufficiency of the corrections for the separation Axj and the lack of perfect 
agreement (see Appendix) between isotropy and the measured spectra of u,, u2 
and u3. 
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FIGURE 8. Comparison between measured spectra and isotropic calculations. (a )  -, measured 
$,,,, and approximated $,d, using (20); --, calculated $,,,, using (13) and (A2);  ---, 
calculated $212,3 or using (21) and (A2). (b) -, measured $ , d 2 ;  -- , calculated q5(,,$ using (12) 
and (AZ). (c) -, measured $ , d 3 ; , - -  , calculated $,da using (12) and (A2). Vertical bars (I) indicate 
maximum experimental uncertainty in measured vorticity spectra at k, 7 z 0.83. 

log,, (k,  a) 

Since w1 has not been measured, i t  is difficult to draw firm conclusions from the 
comparison between the calculated distribution of #,ol, obtained using (13) and (A 2) 
and the measured approximation to #wl.  There is no reason, however, to  suspect the 
convergence between calculation and measurement at very large wavenumbers since 
the contribution from the neglected cross spectrum in (20) should be negigible at 
those wavenumbers. Support for the latter assertion was provided by the excellent 
agreement obtained, for k,q > 0.25, between the spectrum of wl, calculated using 
(13) and (A2) ,  and the sum of the calculated spectra of u2,3 and u ~ , ~ .  The isotropic 
calculation for #,,,, or viz. 

was obtained using a procedure similar to that outlined in Antonia, Browne & 
Chambers (1984) for q5ul or #ul,,. 

Agreement between the measured spectrum of u2,3 or u3,2 and the calculation, 
using (21) and (A 2), occurs only for very large wavenumbers (figure 8a). Con- 
sequently, the agreement between the measured approximation to q5wl and the 
calculated distribution of #,,, obtained with (13) and (AZ), extends only over this 
range of wavenumbers (figure 8a) .  The relative behaviour of measured and calculated 
spectra in figure 8 ( a )  is consistent with the departure from isotropy of w; (figure 2). 
Wallace (1986) noted that the one-dimensional vorticity spectrum of wl, measured by 
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Kistler (1952) in a turbulent grid flow, was in agreement, a t  high wavenumbers, with 
the spectrum calculated using but diverged considerably from the calculation a t  
low wavenumbers. 

The apparently slower approach to local isotropy by w1 than by w2 or w3 requires 
an explanation. The spectrum of u2, and to a lesser extent that of u3, reflects the 
imprint of the organized large-scale motion, exhibiting a significant peak a t  the 
average frequency of this motion (e.g. Cimbala 1985; Antonia et al. 1987b). The 
spectrum of u1 exhibits no such peak, so i t  is conceivable that u1 is less affected than 
either u2 or us by the anisotropy of the large-scale motion. I n  this context, it is 
plausible that w1 which contains information about both u2 and u3 is more influenced 
by the large-scale motion than w 2  or w3,  the latter including information about u1 as 
well as u2 or u3. It should of course, be added that as the Reynolds number increases, 
the ratio of the peak frequency in the u2 or u3 spectrum to the Kolmogorov frequency 
will decrease so that the anisotropy of the large-scale motion should have less effect 
on w 2 ,  w3 and more on wl. 

7. Conclusions 
The measurements indicate approximately the same behaviour across the wake for 

the moments and spectra of the lateral components of vorticity. Although statistics 
of the longitudinal component of vorticity have been inferred indirectly from the 
statistics of individual velocity derivatives, there is sufficient evidence to suggest 
that the statistics of w1 differ from those of w2 or w3.  Mean square values of wi deviate 
from local isotropy, but the deviation is less pronounced for w 2  or w3 than for the 
approximation to w l .  

Over a significant high-wavenumber range, measured spectra of w2 and w3 are in 
satisfactory agreement with the calculation, in reasonable support of local isotropy. 
By contrast, agreement with isotropy of the approximation to the longitudinal 
vorticity spectrum is approached only a t  very large wavenumbers. It is possible that 
the components of w1 feel the anisotropy of the large-scale motion more directly than 
the components ofw, or w3. 

The present statistics of w2 and w3 should provide a useful point of reference when 
simultaneous measurements of the three components of vorticity are made with a 
fixed geometry multiple-wire probe. Such a probe is currently being constructed in 
our laboratory and it is planned to use it in the same flow to gain more insight into 
the organized vortical structure of this flow. 
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Appendix. Choice of the three-dimensional energy spectrum 
To evaluate the integrals in (12), (13) and (21), an expression for E ( k )  is required. 

There are several ways of arriving at  such an expression. One way would be to select 
E(k)  so that it satisfies the measured spectrum of u1 a t  large wavenumbers, the 
isotropic relation between E ( k )  and #ul(kl) being given by 

The resulting form of E ( k )  should strictly satisfy the measured spectra of u2 and u3 
at large wavenumbers, provided local isotropy is valid. For k l q  >, 0.15, the 
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FIGURE 9. Comparison of the measured one-dimensional energy spectrum with the calculation 
based on a particular choice o f E ( k ) .  -, calculated with (A 1) and (A2)  with a, = 3.85, u2 = 3.67. 

log,, (k, 7) 

agreement between the measured spectra of ul, u2, u3 and isotropy was reasonable 
but) not perfect. It seemed therefore appropriate to select E ( k )  in order to satisfy the 
measured spectra collectively rather than to base the selection on the spectrum of a 
particular velocity component. E ( k )  was chosen to satisfy the one-dimensional 
energy spectrum, i.e. the sum of the spectra of ul, u2, u3, viz. 

E(k)  was assumed to be represented by the expression 

E ( E )  = a, gk-3 exp [ -$aa , (ky)~l ,  (A 2) 

and the constants a, and az were varied to provide the best fit to (A 1) at  large 
enough values of E,. Figure 9 indicates that good agreement with the one-dimensional 
energy spectrum is obtained for k ,  y 2 0.15( = log,, k, 9 2 - 0.82) with a1 = 3.85 and 
u2 = 3.67. Relation (A2) was used, with these values of a1 and a2, to estimate $wt and 

when a1 = ct2 = a, relation (A 2) reduces to the expression derived by Corrsin 
(1964) and Pao (1965). Wyngaard (1968, 1969) used the Corrsin-Pao form for E(E), 
with a = 1.7 ,  to estimate corrections due to wire length and wire separation. It would 
however be difficult to justify a universal value of a or indeed a universal form of 
E ( k )  ; here, no special significance is attributed to E ( k )  beyond its empirical 
usefulness. 
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